

Page of 1 24

prepared by Nate Berkopec exclusively for

Hello Ross and WikiEdu!

Thanks for having me take a look at your application. I've identified several
areas for investment in performance. Some of the things I've discussed in
this report are actually just simple configuration changes you can make
today that will save you a lot of money. Some things I’ll be able to fix over
the next three weeks as I work with you. Others are more long-term
projects and skills that you can improve on over the next six months.

This document is organized at the top level by the broad, organization-
level Objectives I've followed in preparing this document. Underneath
those headers are our desired Outcomes, which are my goals for your
performance improvements over the next six months. Underneath that are
specific Recommendations to achieve those outcomes. Each
Recommendation has an associated cost and benefit, rated subjectively on
a 5 point scale.

At the end of the document, I will present again the Objectives, Outcomes,
and Recommendations without commentary. This intended to help you
turn this document into action and assist during planning your sprints, etc.

I hope you enjoy this document and find it a useful guide for the next 6
months of performance work on your application.

Nate Berkopec
The Speedshop

Page of 2 24

Objective 1: Improve the customer
experience for users of the dashboard.
The WikiEdu dashboard is a web application. This means that users
experience latency as the difference between their input - usually a click or
keypress - and the browser rendering an appropriate response and the
page becoming “usable”. There are several components to this latency:

1. Network roundtrip to the server.
2. Request queue time, waiting for a free Passenger process (now visible

in New Relic).
3. Server response time (this is what is visible in New Relic).
4. Parsing the document.
5. Downloading the CSS and JS resources necessary for page rendering.
6. Running JavaScript necessary for page rendering.
7. Sometimes other resources need to be loaded for the page to be usable:

images, videos, etc.

What determines whether or not a page is “usable” depends on the page,
because it depends on what the purpose of the page is and what the user is
trying to accomplish. A page whose sole purpose is to display an image is
not really usable until that image is loaded, for example. On most pages of
the WikiEdu dashboard, the page is usable when all of the text on the page
is visible. It is important to note that “the page becoming usable” may or
may not correlate with existing browser events, such as load,
DOMContentLoaded, First/Largest Contentful Paint, etc.

There are two main scenarios of interaction with the WikiEdu dashboard,
each having very different performance characteristics: cold loading (no
cache), and warm loading (cached, moving around the site).

Page of 3 24

Outcome: Decrease time-to-usable by ~35-40% for
“cold” page loads on the homepage and /training.

Together, the homepage and /training make up about 85% of initial site
visits to the dashboard according to Matomo. This means most of our effort
for improving the initial page load experience should be concentrated here.

Like most pages, both of these pages are usable once the text is rendered.
For pages like this, the Largest Contentful Paint event is a good proxy for
“when the page is usable”.

Since we don’t have any real-user monitoring, we will be using synthetic
benchmarks to analyze the performance of these pages.

According to webpagetest.org, Largest Contentful Paint fires in 1.8 seconds
for the homepage. /training takes 1.578 seconds, but the way the pages
load is very similar, so any difference in these metrics is probably just
statistical variation. I would say this number is actually pretty good. The
requirement for Google marking this metric as “green” as part of their Core
Web Vitals program is 2.5 seconds or less.

However, there are some easy opportunities for improvement that I think
we should take.

RECOMMENDATION: Use an HTTP/2-capable Content Delivery
Network (CDN). Cost ?/5 Benefit 3/5

Currently, the entire site is served over HTTP/1.1. Generally, the best and
easiest way to transition to an HTTP/2 enabled world is to use a Content
Delivery Network, or CDN. Using a CDN will give the WikiEdu a number
of performance benefits:

Page of 4 24

http://webpagetest.org
https://web.dev/vitals/
https://web.dev/vitals/

• HTTP-cacheable content (e.g. static assets like your JS and CSS bundles)
will be served from the CDN’s local point of presence rather than your
server, greatly decreasing network round trip time, especially for the 5%
of WikiEdu users outside of North America.

• HTTP-cacheable content will also only be served by your webserver
once (when the CDN grabs it for the first time), and thereafter will be
served by the CDN, decreasing load on your hardware.

• HTTP/2 is more efficient at prioritizing many downloads at once, which
may improve Largest Contentful Paint times.

• CDNs serve assets with the most efficient compression available -
usually Brotli, decrease file sizes.

• When using a CDN, SSL connections are set up to the CDN PoP, rather
than your web server, decreasing the time required to initially connect to
the dashboard.

• Also, since HTTP/2 only sets up one connection per domain, time to
download JS and CSS will decrease, because we no longer have to set up
a connection first before we can download those assets.

Note how some of these benefits could be captured by simply setting up
HTTP/2 on your Apache/Passenger servers. However, the benefits of the
physical locations of CDN Points of Presence cannot be replicated.

Really, for me, the question is not IF you should use a CDN, but which,
given the unique nature of your deployment environments. Wikimedia
appears to have a CDN but it’s not part of Cloud Services, so I don’t think
you can use it. Wikimedia Foundation appears to have worked with
Cloudflare in the past. My preferred CDN vendors are Cloudflare and
Fastly.

RECOMMENDATION: Mark as much Javascript as possible with the
async attribute. Cost 2/5 Benefit 4/5

When building a webpage, when a browser’s parser encounters a script
tag, it must pause, download the script (if it has a src attribute), and

Page of 5 24

https://techblog.wikimedia.org/tag/cdn/
https://techblog.wikimedia.org/tag/cdn/
https://www.cloudflare.com/case-studies/wikimedia-foundation
https://www.cloudflare.com/case-studies/wikimedia-foundation
https://www.cloudflare.com/case-studies/wikimedia-foundation

execute it. If that script tag is inside the head tag, this means that the
browser pauses and blocks before any of the actually important part of the
DOM (what’s inside the body tag) is ready.

There are several scripts in the head tag of the homepage and /training:

• i18n.js
• en.js
• vendors.js
• sentry.js
• jquery.js
• main.js

Every single one of these scripts must be downloaded and executed before
any part of the DOM can render.

However, by adding the async attribute to a script tag, we can change this
behavior. The async attribute allows the browser to unblock the parser and
continue past the script tag. It’s essentially saying to the browser:
“download this in the background, and then execute it whenever you have
finished downloading it.”

I like to test if “async” behavior works for a script tag by using my
browser’s developer tools to block that request. If the page still looks OK
and no errors are raised, it means that the script was unnecessarily
blocking the rendering process. If we do this, we can see that every script
(except Sentry, which is already using a sort of delayed/async mechanism
internally) can be blocked, and the page still looks OK (sans rendering the
upper toolbar, which I’ll get to in a moment).

Given how the i18n system works, I believe this JS could only be “async’d”
in the default case of a browser requesting the English version. For all other
translations, the i18n scripts would have to be synchronous.

Page of 6 24

We will probably have to do some work to make each of these scripts
async. Common problems include:

• Async does not guarantee order. Main.js could load before vendor.js, for
example.

• Any script calls in the DOM would have to be made also async, to do
deal with the fact that the functions they are trying to call may not yet be
defined (for example, the way that you are initializing i18n).

With all of those scripts disabled, the homepage fires Largest Contentful
paint in 850 milliseconds instead of 1350 milliseconds. That is about a 35%
improvement.

RECOMMENDATION: Server-render the upper toolbar. Cost: 3/5
Benefit 1/5

The upper toolbar on the homepage is rendered client side via React. It’s a
very simple toolbar from the looks of things (at least it’s starting state).

When marking the JS as async, this toolbar renders much later. Server-
rendering it would prevent this “flash of unstyled content”. This effect
already occurs in the current design, but marking JS as async could make it
worse.

One of the other Core Web Vitals is Cumulative Layout Shift. It measures
how much the layout of the page changes after its initial render. The
toolbar current renders and “pops” the entire page down, increasing the
score for this metric. It makes the page less usable.

Outcome: Decrease time-to-usable for “cold” page
loads on course pages by 35% or more.

Page of 7 24

Many of the same problems and solutions exist on the /courses pages as
they do for the homepage, with the important difference being that these
pages are client side rendered by React.

My recommendations for i18n hold for these pages as well. The Vega
javascript can also be made asynchronous, as most pages do not actually
require these scripts.

RECOMMENDATION: Optimize JS bundle sizing and composition to
reduce JS downloads. Cost 3/5 Benefit 2/5

Merging the vendors Javascript and Jquery JS into the main Webpack
bundle would allow us to more easily control total bundle size.

I will also audit each component of the vendors JS bundle to ensure that it
is still needed and cannot be easily replaced by a smaller dependency.

RECOMMENDATION: The “main” Webpack JS bundle should come
first in the head tag. Cost 2/5 Benefit 3/5

One can clearly see a large gap in the download behavior of a course page:

Ideally, all resources required to render a page should download
immediately, as soon as the document has been returned. However, we see
two distinct gaps appearing after the initial document delivery. Let’s talk
about the first one.

The resources downloaded after Gap #1 are the handful of JS files
downloaded by Webpack. The download of these files is kicked off by
main.js.

Page of 8 24

However, before main.js can execute, the following events must happen:

• i18n.js must download and execute.
• en.js must download and execute.
• vendors.js must download and execute.
• JQuery.js must download and execute.
• vega JS must download and execute.

These events can take a long time - up to a whole second on my local
machine. If main.js executed earlier, it could start off the download for
these additional Webpacked resources, required for rendering the Course
page, far sooner.

RECOMMENDATION: Trigger JSON downloads sooner. Cost 2/5
Benefit 2/5

This is the second gap. After downloading and executing the Webpacked
resources, a few JSON resources are requested by the now-booted React
app. These resources are strictly necessary for the rendering of the page.

I believe the right move here is to use some resource hints on the course
pages to trigger the download of these resources as soon as possible.

Probably the best alternative would be to use link tags with the rel=preload
attribute. I’ll have to be careful implementing this, as we want to be sure
we don’t over-prioritize these resources and accidentally slow the page
down.

As an example, the course homepage requests users.json, timeline.js,
course.json, and campaigns.json. You already know that the browser will
request these resources at the time of rendering the route, so adding a
preload resource hint in Rails will be easy.

Page of 9 24

Outcome: Interactions post-first-load should feel fast
and snappy in the “courses” React app.

The React parts of the frontend experience - that is, the Javascript which
runs when navigating from one tab to another, for example - are extremely
simple. Latency in interactions post-first-page load is almost entirely down
the backend response.

RECOMMENDATION: Remove the external service call from
destroying assignments. Cost: 1/5 Benefit 1/5

The assignments destruction action makes external service calls to
Wikipedia to update state there. Instead of waiting on Wikipedia to
respond, we should move this task into a background job and return a 200
response to the user ASAP.

RECOMMENDATION: Reduce the average response time of 4
“unusable” endpoints. Cost: 3/5 Benefit 3/5

There are 4 endpoints whose response times are so slow on average that
they are basically unusable:

• Surveys#results
• Ores_plot#campaign_plot
• Courses#manual_update
• Survey_assignments#index

Reducing response times here will make these actions actually a pleasure to
use, rather than something you have to wait 10 seconds or more for!

Each one of these actions suffers from catastrophic N+1s, sometimes on the
order of 10s of thousands of database calls.

Page of 10 24

RECOMMENDATION: Prefetch the other JSON resources inside a
course. Cost 1/5 Benefit 2/5

We can use the prefetch resource hint to indicate an optional download
which may be required on the next navigation. Using this hint on course
pages will allow us to request data for the other tabs of the course, so when
the user clicks them, zero latency occurs and the content can be rendered
immediately.

RECOMMENDATION: Reduce the average response time of a handful
of “bad” endpoints. Cost 3/5 Benefit 3/5

These are some endpoints with poor (>500 millisecond) response times that
are called frequently:

• CampaignsController#articles
• CampaignsController#users
• AssignmentsController#create
• RevisionFeedbackController#index
• FeedbackFormResponsesController#create

None of these controllers have N+1 issues, so installing rack-mini-profiler
on production will be required to see what’s going on.

RECOMMENDATION: Fix weird behavior with ActionDispatch calling
itself 30 times. Cost 1/5 Benefit 1/5

Just something I noticed on New Relic: almost every response shows
ActionDispatch::MiddlewareStack::InstrumentationProxy#call being called
30 times. This is not typical. It doesn’t take up a lot of time but I think it’s
something that should be investigated and fixed.

Page of 11 24

RECOMMENDATION: Create “alarm bells” for N+1s in development
mode. Cost 2/5 Benefit 4/5

Most of the Dashboard’s most serious performance problems revolves
around N+1s. A development process that reproduces these problems on
your local machine will make them more visible and less likely to ever be
deployed for production.

There are couple of things we can do to fix this:

1. Install query-counters in development mode that surface the number of
queries that ran on a given page or endpoint.

2. Use production data in development, so that the local database is as
complex as the production one.

I will work with you to come up with a process that works for you and
future WikiEdu developers.

Page of 12 24

OBJECTIVE: Understand and increase
capacity “headroom” for additional
traffic.
Web application backends are queueing systems. When clients connect to
Apache/Passenger, they are placed in a single queue. Passenger “worker”
processes pull from this queue whenever they are free and not processing
any other requests.

There are several simple equations, developed by Agner Krarup Erlang and
the operations researcher John Little, which help us to understand the
utilization and behavior of systems such as these.

In a web application backend, we wish to minimize queueing while
maximizing utilization. That is, we want to keep the average time per
request spent waiting in queues low, while keeping hardware usage as low
as possible. An app managed in this way meets its performance
requirements with the minimum amount of cost and complexity.

OUTCOME: Understand current traffic, utilization and
available headroom

For a queueing system, Erlang (the guy, not the language) showed that we
can say that the average number of requests being processed in parallel by
the system is equal to:

Average number of requests processing in parallel over last 60 minutes = Average
response time * Average request arrival rate

For example, during periods of high usage, the Dashboard receives about
250 requests per minute. Each request takes about 50 milliseconds on
average.

Page of 13 24

This means that the average number of requests being processed in parallel
is 0.050 (seconds per request) * 4.16 (requests per second). Note how the
units cancel out, leaving us with a dimensionless quantity of 0.208. That
means that, during periods of peak web load, your server is processing
0.208 requests in parallel. We call this the "carried traffic”.

We can do the same calculation for the non-web (background job) side. In
this case, the average time per job was 2 seconds, and about 1 job was
performed every second. That’s a carried traffic value of 2.

So, this means that you’re actually processing 10 times as much
background job load as you are frontend/web load.

Since you’re running the background jobs, web, and even databases on a
single node, that means that we can expect your long-term CPU load to
about 2.2 as well. This server is a 16GB/6vCPU server. Since there are 6
vCPUs available, and we are using 2.2, our long term utilization will hover
around 20%.

In most systems, utilization of 50-80% provides the best tradeoff between
high utilization and low queueing times. That means we could easily afford
to double usage on this instance without any decrease in service quality.

We can see already that queue times are very low. After installing the X-
Request-Start header on our requests, New Relic shows that request queue
times are very low (less than a few milliseconds). Once this number
increases (say, to 20 milliseconds or more), we would know that we are
running out of capacity for web requests.

RECOMMENDATION: Create alarms around web request queue length
and certain job queue latencies. Cost 2/5 Benefit 3/5

In this model of scaling a system, the output variable is the average time
spent in the queue for a web request or background job, and the

Page of 14 24

independent variable is utilization. Because utilization is simply carried
traffic divided by the “offered” traffic available, we decrease utilization by
increasing offered traffic.

In the case of a web request, offered traffic is simply the total number of
Passenger worker processes available to process a request. In the case of
background jobs, it is the number of Sidekiq processes available to process
a request.

Typically, we simply configure the number of processes per “box” to a
number appropriate for the underlying CPU and memory of the box, and
then add boxes to the setup when utilization gets high and queue times
increase. You have a single node setup, a proposed multi-node setup will
be described later.

Still, we want to know when queueing is approaching bad levels.

I have already created an alert in New Relic when request queue time
exceeds 20 milliseconds. We’ll need to work on reporting similar metrics to
NewRelic regarding how long background jobs spend in queues.

RECOMMENDATION: Create better logging around CPU, memory
utilization. Cost 2/5 Benefit 3/5

We need a strategy for monitoring and reporting CPU and memory
utilization. This may simply involve installing New Relic’s infrastructure
monitoring or something else. I’ll have to work with you on what works
for your situation. We want to make sure these resources do not run out
under periods of maximum load.

RECOMMENDATION: Fix whatever is restarting web instances. Cost:
1/5 Benefit: 3/5

Page of 15 24

Something is restarting your web processes at the rate of about 40 per hour.
We need to figure out what this is.

Restarts at this frequent of a rate increase response times, sometimes to a
very large extent.

OUTCOME: Decrease capacity use.

The easiest way to scale a single-node setup like your own is to reduce the
average response time of jobs and web responses, decreasing carried traffic.

As already laid out, background jobs make up 90% of your load (carried
traffic of 2). For example, if we could reduce background job response time
by 50%, carried traffic would be reduced by 50% as well, greatly decreasing
utilization.

RECOMMENDATION: Fix N+1s across the application, particularly in
background jobs. Cost 3/5 Benefit 3/5

Page of 16 24

N+1s in background jobs are increasing carried traffic far beyond what they
really need to be. Reducing background job processing time by reducing
N+1s would decrease capacity use to the greatest extent, far more than
focusing on web requests.

In terms of reducing capacity use, there is only one job that matters:
CourseDataUpdateWorker, which makes up 98% of load. Reducing the
response time of this job will be the primary task here.

RECOMMENDATION: Set Sidekiq concurrency to appropriate values.
Cost 1/5 Benefit 2/5

Since Sidekiq uses multiple threads, we can say that the offered traffic of a
single Sidekiq process is actually greater than 1. Because of the Global VM
Lock, the exact number is dependent on the amount of I/O wait that the
job performs, and what our concurrency is set to:

This is a mathematical relationship created by Amdahl’s Law.

The primary job that you’re processing, CourseDataUpdateWorker, spends
about 50% of its time in I/O. However, concurrency is only set to 2.
Increasing concurrency to 10 would increase the offered traffic per process
to 2, effectively doubling capacity.

I/O Wait `concurrency` Offered Traffic

5% or less 1 1

25% 5 1.25
50% 10 2
75% 16 3
90% 32 8
95% 64 16

Page of 17 24

https://en.wikipedia.org/wiki/Amdahl's_law

OUTCOME: Understand and prevent future downtime
on the global dashboard.

As you described to me, the global dashboard had some problems during
periods of high traffic.

RECOMMENDATION: Create the logging infrastructure necessary to
understand CPU and memory load on Global. Cost: 3/5 Benefit: 3/5

We simply need the same instrumentation on Global as we have on Wiki
Ed. We’ll have to work together on creating something that can give us the
data that we need. Here’s what we’ll need from Global:

• Average response time (jobs and web)
• Average request rate (jobs and web)
• Queue times (jobs and web)
• CPU load and utilization
• Memory utilization

If I had to guess, you are simply outstripping the capacity of the node. The
capacity utilization reduction efforts I’ll be making on the app will help,
but it would be helpful to know just how much headroom there is.

OUTCOME: Create a plan for future traffic growth,
understanding what bottlenecks exist and
approximately when they will need to be addressed.

Once we’ve got the current situation under control, we can start thinking
about the future.

Page of 18 24

RECOMMENDATION: Create a plan for multi-node scaling. Cost: 3/5
Benefit 4/5

The most obvious thing is to create a plan for going multi-node. You’ll need
something that will work on both Wikimedia Cloud Services and on
Linode.

The general architecture would be something like:

• N nodes for Apache/Passenger
• N nodes for Sidekiq
• 1 node for the MariaDB database
• 1 node for Redis
• 1 node for the load balancer

Probably the most important and finicky part of the setup will be the load
balancing. Splitting off Sidekiq and Redis may be the easiest and the largest
benefit, and the part that should be tackled first.

This recommendation and task will involve understanding private
networking in both of your deployment environments, then creating scripts
or other deployment architecture to actually provision these environments.

RECOMMENDATION: Optimize Sidekiq queue structure so that job
latencies are addressed and documented. Cost 1/5 Benefit 1/5

You really only have two Sidekiq jobs: CourseDataUpdateWorker, and
everything else.

However, as you specified to me, different courses actually have different
priorities for how often they need to be synced. For each major job type, we
need to document the maximum acceptable latency from the time it is
enqueued until when it has finished executing, and then make sure our
queue structure and worker configuration helps us to achieve those targets.

Page of 19 24

OUTCOME: Understand and improve the throughput
of the course update process
(CourseDataUpdateWorker), improving data
synchronization latency (up to 10 minutes/update for
editathons)

CourseDataUpdateWorker, and the frequency at which it is run, is
intimately linked with user experience. The more often we can run it, the
lower the data sync latency with Wikipedia, and the better the customer
experience.

The primary impediment to this is the load that the
CourseDataUpdateWorker imposes on the server, currently accounting for
almost 90% of total load. By decreasing average response time, we decrease
this load.

RECOMMENDATION: Fix “long” Article SELECT statements in this
worker. Cost: 2/5 Benefit 2/5

This worker suffers from a few Article SELECT statements which take a
long time, particularly a count triggered in the duplicate article deleter
(articles_grouped_by_title_and_namespace):

SELECT COUNT(*) AS count_all, `articles`.`title` AS
articles_title, `articles`.`namespace` AS articles_namespace
FROM `articles` WHERE `articles`.`title` IN
(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) AND
`articles`.`wiki_id` = ? GROUP BY `articles`.`title`,
`articles`.`namespace`

We need either an alternative strategy or a better query here. 2.5 million +
rows are getting scanned in most cases.

Page of 20 24

RECOMMENDATION: Fix N+1s in this worker on
TrainingModulesUsers, Revisions. Cost: 2/5 Benefit 3/5

I’ll need to dig into this worker to understand what it does and what it
loops over. Most traces of the worker show many N+1s, particularly for
Revisions. Removing these will decrease job exec time.

RECOMMENDATION: Understand how this worker scales in relation
to sync latency, and create a plan relating number of courses, sync
latencies, and number of workers. Cost: 1/5 Benefit 3/5

So, once the average processing times are fixed, we can start thinking about
how much load each course in the system creates. Then, we can make
capacity planning decisions: X number of courses running at Y updates per
hour means Z Sidekiq workers. That will help you to understand how
quickly you need to proceed with multi-node plans, and what sync rates
you can choose.

Page of 21 24

WikiEdu Dashboard: Tune
Summary
I. OBJECTIVE: Improve the customer experience for users of the

dashboard.
A. OUTCOME: Decrease time-to-usable by 35-40% for “cold” page

loads on the homepage
1. RECOMMENDATION: Use an HTTP/2-capable Content

Delivery Network (CDN). Cost ?/5 Benefit 3/5
2. RECOMMENDATION: Server-render the upper toolbar. Cost:

3/5 Benefit 1/5
3. RECOMMENDATION: Mark as much Javascript as possible with

the async attribute. Cost 2/5 Benefit 4/5
B. OUTCOME: Decrease time-to-usable for “cold” page loads on course

pages by 35% or more.
1. RECOMMENDATION: Optimize JS bundle sizing and

composition to reduce JS downloads. Cost 3/5 Benefit 2/5
2. RECOMMENDATION: The “main” Webpack JS bundle should

come first in the head tag. Cost 2/5 Benefit 3/5
3. RECOMMENDATION: Trigger JSON downloads sooner. Cost

2/5 Benefit 2/5
C. OUTCOME: Interactions post-first-load should feel fast and snappy

in the “courses” React app.
1. RECOMMENDATION: Remove the external service call from

destroying assignments. Cost: 1/5 Benefit 1/5
2. RECOMMENDATION: Reduce the average response time of 4

“unusable” endpoints. Cost: 3/5 Benefit 3/5
3. RECOMMENDATION: Prefetch the other JSON resources inside

a course. Cost 1/5 Benefit 2/5
4. RECOMMENDATION: Reduce the average response time of a

handful of “bad” endpoints. Cost 3/5 Benefit 3/5

Page of 22 24

5. RECOMMENDATION: Fix weird behavior with ActionDispatch
calling itself 30 times. Cost 1/5 Benefit 1/5

6. RECOMMENDATION: Create “alarm bells” for N+1s in
development mode. Cost 2/5 Benefit 4/5

II. OBJECTIVE: Understand and increase capacity “headroom” for
additional traffic.

A. OUTCOME: Understand current traffic, utilization and available
headroom.

1. RECOMMENDATION: Create alarms around web request queue
length and certain job queue latencies. Cost 2/5 Benefit 3/5

2. RECOMMENDATION: Create better logging around CPU,
memory utilization. Cost 2/5 Benefit 3/5

3. RECOMMENDATION: Fix whatever is restarting web instances.
Cost: 1/5 Benefit: 3/5

B. OUTCOME: Decrease capacity use.
1. RECOMMENDATION: Fix N+1s across the application,

particularly in background jobs. Cost 3/5 Benefit 3/5
2. RECOMMENDATION: Set Sidekiq concurrency to appropriate

values. Cost 1/5 Benefit 2/5
C. OUTCOME: Understand and prevent future downtime on the global

dashboard.
1. RECOMMENDATION: Create the logging infrastructure

necessary to understand CPU and memory load on Global. Cost:
3/5 Benefit: 3/5

D. OUTCOME: Create a plan for future traffic growth, understanding
what bottlenecks exist and approximately when they will need to be
addressed.

1. RECOMMENDATION: Create a plan for multi-node scaling.
Cost: 3/5 Benefit 4/5

2. RECOMMENDATION: Optimize Sidekiq queue structure so that
job latencies are addressed and documented. Cost 1/5 Benefit 1/5

E. OUTCOME: Understand and improve the throughput of the course
update process (CourseDataUpdateWorker), improving data
synchronization latency (up to 10 minutes/update for editathons)

Page of 23 24

1. RECOMMENDATION: Fix “long” Article SELECT statements in
this worker. Cost: 2/5 Benefit 2/5

2. RECOMMENDATION: Fix N+1s in this worker on
TrainingModulesUsers, Revisions. Cost: 2/5 Benefit 3/5

3. RECOMMENDATION: Understand how this worker scales in
relation to sync latency, and create a plan relating number of
courses, sync latencies, and number of workers. Cost: 1/5 Benefit
3/5

Page of 24 24

	Objective 1: Improve the customer experience for users of the dashboard.
	Outcome: Decrease time-to-usable by ~35-40% for “cold” page loads on the homepage and /training.
	RECOMMENDATION: Use an HTTP/2-capable Content Delivery Network (CDN). Cost ?/5 Benefit 3/5
	RECOMMENDATION: Mark as much Javascript as possible with the async attribute. Cost 2/5 Benefit 4/5
	RECOMMENDATION: Server-render the upper toolbar. Cost: 3/5 Benefit 1/5
	Outcome: Decrease time-to-usable for “cold” page loads on course pages by 35% or more.
	RECOMMENDATION: Optimize JS bundle sizing and composition to reduce JS downloads. Cost 3/5 Benefit 2/5
	RECOMMENDATION: The “main” Webpack JS bundle should come first in the head tag. Cost 2/5 Benefit 3/5
	RECOMMENDATION: Trigger JSON downloads sooner. Cost 2/5 Benefit 2/5
	Outcome: Interactions post-first-load should feel fast and snappy in the “courses” React app.
	RECOMMENDATION: Remove the external service call from destroying assignments. Cost: 1/5 Benefit 1/5
	RECOMMENDATION: Reduce the average response time of 4 “unusable” endpoints. Cost: 3/5 Benefit 3/5
	RECOMMENDATION: Prefetch the other JSON resources inside a course. Cost 1/5 Benefit 2/5
	RECOMMENDATION: Reduce the average response time of a handful of “bad” endpoints. Cost 3/5 Benefit 3/5
	RECOMMENDATION: Fix weird behavior with ActionDispatch calling itself 30 times. Cost 1/5 Benefit 1/5
	RECOMMENDATION: Create “alarm bells” for N+1s in development mode. Cost 2/5 Benefit 4/5
	OBJECTIVE: Understand and increase capacity “headroom” for additional traffic.
	OUTCOME: Understand current traffic, utilization and available headroom
	RECOMMENDATION: Create alarms around web request queue length and certain job queue latencies. Cost 2/5 Benefit 3/5
	RECOMMENDATION: Create better logging around CPU, memory utilization. Cost 2/5 Benefit 3/5
	RECOMMENDATION: Fix whatever is restarting web instances. Cost: 1/5 Benefit: 3/5
	OUTCOME: Decrease capacity use.
	RECOMMENDATION: Fix N+1s across the application, particularly in background jobs. Cost 3/5 Benefit 3/5
	RECOMMENDATION: Set Sidekiq concurrency to appropriate values. Cost 1/5 Benefit 2/5
	OUTCOME: Understand and prevent future downtime on the global dashboard.
	RECOMMENDATION: Create the logging infrastructure necessary to understand CPU and memory load on Global. Cost: 3/5 Benefit: 3/5
	OUTCOME: Create a plan for future traffic growth, understanding what bottlenecks exist and approximately when they will need to be addressed.
	RECOMMENDATION: Create a plan for multi-node scaling. Cost: 3/5 Benefit 4/5
	RECOMMENDATION: Optimize Sidekiq queue structure so that job latencies are addressed and documented. Cost 1/5 Benefit 1/5
	OUTCOME: Understand and improve the throughput of the course update process (CourseDataUpdateWorker), improving data synchronization latency (up to 10 minutes/update for editathons)
	RECOMMENDATION: Fix “long” Article SELECT statements in this worker. Cost: 2/5 Benefit 2/5
	RECOMMENDATION: Fix N+1s in this worker on TrainingModulesUsers, Revisions. Cost: 2/5 Benefit 3/5
	RECOMMENDATION: Understand how this worker scales in relation to sync latency, and create a plan relating number of courses, sync latencies, and number of workers. Cost: 1/5 Benefit 3/5

